
Physics 566: Quantum Optics I 
Problem Set 7 

Due Friday, November 15, 2013 (5:00 PM) 
 
Problem 1:  Cavity QED (20 points) 
In this problem we will explore some of Prof. Serge Haroche’s seminal quantum optics 
experiments in cavity QED for which he was awarded the Nobel Prize in 2012.  These 
demonstrate the quantum nature of the electromagnetic field – here microwave photons, as far 
from high energy photons as you can get! 
 
Consider the following schematic: 
 

 
 

Rubidium atoms, effusing from the oven O, are prepared at a well-defined time and selected with 
a well defined speed in V.  An atom can then be prepared in box B in one of two circular Rydberg 
states, g  or e , with principle quantum numbers n=50, 51, respectively, ω eg = 51  GHz. The 

atom passes through a high-Q superconducting cavity C such that one of the cavity modes, with 
frequency ω c , is tuned near to the atomic transition e ↔ g .   After passing through the cavity, 

an atom can measured in detectors that determine if it is in state g  or e . 
 
In addition, the quantum cavity C is sandwiched inside a Ramsey Interferometer.  The Ramsey 
separated two zones, R1 and R2, correspond to classical microwave pulses that can apply π/2 −
pulses on the e ↔ g  transition.  In contrast to the standard atomic clock that we have studied, 
in which there is free evolution between the zones, here we have a quantum super-high-Q 
quantum cavity in the middle. 
 
(a) Consider the case of a stream of atoms initially prepared in B in the excited state e and the 
cavity C in the vacuum.  The cavity is tuned to resonance, ω c =ω eg  and the vacuum Rabi 

frequency is 2g0 / (2π ) = 50 kHz.  The atoms are sent through the cavity and interact for a time t 
and then measured. The atomic beam flux is chosen very low, so that the separation time between 
atoms crossing the cavity, T, is much longer than the lifetime of a photon in C, so each atom sees 
a fresh vacuum.  The Ramsey zones, R1 and R2, are note used in this experiment. 
 
What is the probability of detecting the atom in the state g  after it passes through C as a 
function of the interaction time.  Sketch this and comment on your result.  



(b) This apparatus can be used to detect the presence or absence of a single photon by looking at 
the correlation between two atoms that pass through the cavity.  Consider the same operating 
conditions as part (a).  The velocity is now chosen so that the interaction time is 2g0t = π .  A 
second atom is sent through the cavity in state g  for the same interaction time.   
 
Show the conditional probability of measuring the second atom in e  conditioned on measuring 

the first in g  is e−T /τ c  where T is the time separation of the two atoms, and τc is the cavity 
decay time.  Comment on this result. 
 
(c) Now let’s employ the Ramsey cavities.  One can use this to demonstrate the transfer of 
quantum coherence between two atoms, mediated by the quantum mode of the cavity.  The 
operating conditions are again the same as above.  With the quantum cavity C initially in the 
vacuum, the first Ramsey zone R1 applies a π / 2 -pulse around x to the atom and prepares it in 
the superposition e + i g( ) / 2 .  This atom passes through the quantum cavity C for an 

interaction time 2g0t = π  and then measured to be in the state e or g .  After a time T, a 

second atom, initially in the state g , is sent through the quantum cavity C for an interaction 
time 2g0t = π .  The second Ramsey zone R2, with field phased-shifted by φ   relative to the pulse 
in R1, acts to apply π / 2 -pulse to this second atom.  We read out the state of the two atoms. 
   
Show the conditional probability of measuring the second atom in e  conditioned on measuring 

the first in g  is (1+ e−T /(2τ c ) cosφ) / 2 .  Give a Bloch sphere description of the transfer of 
coherence between the two atoms. 
 
(d ) A Ramsey interferometer can be used to measure the light-shift on a atom, as we have studied.  
Here we want to measure the light shift of the quantized field and show how this can be used to 
measure the absence or presence of a photon without destroying it (a so-called quantum 
nondemolition (QND) measurement).    Suppose now that the cavity is slight detuned from 

resonance Δ =ω c −ω eg >> g0 .  The atoms are prepared in R1 in e + i g( ) / 2 , and passed 
through the cavity with exactly n photons inside.  The speed is sufficiently slow so that the initial 
“bare states” e,n and g,n  adiabatically follow the “dressed states” of the coupled 

atom+cavity.  The joint state after the interaction is n e− iδe,n e + ie− iδ g ,n g( ) / 2 , where δ e,n   

and δ g,n  are the phase shifts imparted to the states due to the light-shift (dressed) interaction. 
Note, the cavity still has exactly n  photons – after the atom emerges, it neither absorbed or 
emitted a photons, but the quantized field caused a rotation of the atomic state in its Bloch sphere. 
 
Find δ e,n   and δ g,n  and design the experiment to measure the photon number n. 
 
  



Problem 4:  The relative role of vacuum fluctuations and radiation (20 points) – Extra Credit 
As discussed in lecture, spontaneous emission and level shifts can be ascribed to the perturbing 
effect of vacuum fluctuations and/or radiation reaction.  These are actually two sides of the same 
coin – how we apportion the phenomenon to vacuum fluctuations vs. radiation reaction depends 
on how we analyze the problem.  In this problem we will fill in a few details. 
 
(a) Starting with the fundamental Hamiltonian for a two-level atom coupled to the vacuum in the 
dipole and rotating wave approximation, find the Heisenberg equations of motion show that they 
can be written as 
 

 
d
dt
âkµ = −iω kâkµ − igkµ

∗ σ̂ −  

 
d
dt
σ̂ + = iω egσ̂ + − i gkµ

*

kµ
∑ s âkµ

† σ̂ z + (1− s)σ̂ z âkµ
†⎡⎣ ⎤⎦  

 
d
dt
σ̂ z = −2 i gkµ sσ̂ +âkµ + (1− s)âkµσ̂ +⎡⎣ ⎤⎦( ) + h.c.

kµ
∑  

 
Here the s is a parameter that we will choose in the range, 0 ≤ s ≤1  (don’t confuse this with the 
saturation parameter). When s=1, all photon annihilation operators are to the right and all photon 
creation operators are to the left – the equations are said to be in “normal order.” When s=0, the 
opposite is true and the equation are said to be in “anti-normal order.”  When s=1/2, the 
equations are said to be in “symmetric order.”  The choice of s determines the way in which we 
apportion level shifts and spontaneous decay to vacuum fluctuations vs. radiation reaction.   
 
(b) Show that to first order in the coupling constant (Born approximation),  
 

âkµ (t) = âkµ
free(t)+δ âkµ (t) ,   σ̂ + (t) = σ̂ +

free(t)+δσ̂ + (t) ,   σ̂ z (t) = σ̂ z
free(t)+δσ̂ z (t)   

where 

 âkµ
free(t) = âkµ (0)e

− iω kt ,  δ âkµ (t) = −igkµ
* e− iω k (t− ′t )

0

t

∫ σ̂ −
free(t ') = −igkµ

* ζ (ω k −ω eg )σ̂ −
free(t)  

σ̂ +
free(t) = σ̂ + (0)e

iωegt  

δσ̂ + (t) = −i d ′t eiωeg (t−t ')

0

t

∫ gkµ
*

kµ
∑ â†kµ

free( ′t )σ̂ z
free( ′t )= −i gkµ

*

kµ
∑ ζ (ω k −ω eg )â

†
kµ
free(t)σ̂ z

free(t)  

 
 

δσ̂ z (t) = −2i d ′t
0

t

∫ gkµ
kµ
∑ σ̂ +

free( ′t )âkµ
free(t ') + h.c. = −2i gkµ

kµ
∑ ζ *(ω k −ω eg )σ̂ +

free(t)âkµ
free(t)+ h.c.

 

With ζ (ω eg −ω k ) = ei(ωeg−ω k )(t− ′t ) d ′t
0

t

∫ ≈ πδ (ω eg −ω k )+ iP
1

ω eg −ω k

⎡

⎣
⎢

⎤

⎦
⎥  (the Markoff approx.).    

 
Notes: âkµ

free(t)  is the “vacuum field” and δ âkµ (t) the “source field” leading to radiation reaction. 
     Because the free field commute at equal times we need not worry about operator ordering here. 

σ̂ z
free(t) = σ̂ z (0)



 
 (c) Take the Heisenberg state of the joint atom field system to be Ψ AF = ψ A ⊗ 0 F , i.e. an 

arbitrary state of the atom and the field in the vacuum.  Using the perturbation expansion, show 
that the expected values of the observables evolve according to 
 

 
d
dt

σ̂ + = iω eg σ̂ + − i gkµ
*

kµ
∑ s δ âkµ

† σ̂ z
free + (1− s) δσ̂ z âkµ
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freeδ âkµ
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⎣

⎤
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d
dt
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⎣
⎤
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kµ
∑  

 
Note the relative contributions of the vacuum field and the source field depending on the operator 
order we had initially chosen. 
 
 
(d) Put this all together to show 
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where  Γ = 2π gkµ
2
δ (ω k −ω eg )
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∑ , δ = P
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We learn for this the following lessons: 
(i) The decay of populations and coherences can be calculated in the Heisenberg picture. 
(ii) The way we apportion the relative contributions to levels shifts arising from vacuum 
fluctuations and radiation reaction depends on operator ordering, but the total result is 
independent of operator ordering, as expected. 
(iii) In normal ordering we attribute the whole of the level shift and decay rate to radiation 
reaction.  
(iv) In antinormal ordering both vacuum fluctuations and radiation reaction contribute to both 
level shifts and decay rates.   
(v) In symmetric ordering, the entire level shift is due to vacuum fluctuations, but decay has 
contributions from vacuum fluctuation and radiation reaction.  
(vi) In no ordering is the decay attributable solely to vacuum fluctuations. 
 


